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Abstract
The cohesive energetics of three phases of solid cubic rubidium chloride, the
zinc blende structured 4:4 phase, the 6:6 sodium chloride polymorph and
the 8:8 phase with the cesium chloride structure, are computed using a non-
empirical fully ionic model. The rearrangement energies needed to convert
free anions to their optimal states in-crystal, two-body inter-ionic potentials,
plus the further contributions arising from electron correlation, are reported.
The ‘optimal’ anion–anion potentials, computed by using at each geometry the
optimal wavefunction, are compared with the ‘frozen’ potential using the same
wavefunction at all geometries.

The lattice energy of the 4:4 structure is predicted to be some 40 kJ mol−1

smaller than that of either the 6:6 or the 8:8 phases. Introduction of the
Axilrod–Teller triple dipole dispersion interactions and the vibrational zero
point energy predicts the 8:8 phase to lie 3.2 kJ mol−1 lower in energy than the
6:6 structure. This is both consistent with radius ratio arguments and supported
by two separate experiments that strongly suggest that the 8:8 phase is favoured
over the 6:6 structure at low temperatures even though the latter is more stable
at ambient temperatures.

A shell model description is presented for the ion-induced dipole
interactions that arise both in small clusters and in crystals encapsulated in
nanotubes. The elastic constants and entropy at 300 K predicted for the 6:6
phase from this model by using the GULP program agree well with experiment.
A smaller entropy is predicted for the 8:8 structure.

1. Motivation

Two broad classes of reason motivate the present theoretical study, using a fully ionic
description, of three different cubic polymorphs of solid rubidium chloride. The assumption of
full ionicity underlying these computations is justified by abundant experimental and theoretical
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evidence, reviewed elsewhere [1, 2], that many crystals are essentially fully ionic. Two x-ray
crystallographic studies of rubidium chloride are especially relevant here because the electron
density distributions measured [3, 4] were entirely consistent with fully ionic bonding with no
evidence for any covalency.

The first broad reason for studying rubidium chloride is that the cohesive properties of
the different cubic phases, and the inter-ionic interactions through which these are determined,
constitute one of the most interesting extensions of previous theoretical investigations of
such properties of polar solids [5–12]. In particular, the difference between the cohesive
energies of the six coordinated phases of alkali halides having the sodium chloride structure
(the 6:6 structure) and the eight-fold coordinated phases having the cesium chloride structure
(the 8:8 structure) proved, for many years, to be very hard to calculate. Thus theoretical
studies, starting with Hund in 1925 [13] and extending over several decades through the 1937
work of May [14, 15], predicted incorrectly that the 6:6 phase of CsCl had a lower energy
than the 8:8 structure observed to be the most stable at room and lower temperatures. This
difficulty was, however, resolved by the observation [6, 12] that the expression for the cohesive
energy of an ionic solid contains, in addition to the usual Madelung term, short range two-
body inter-ionic repulsions and the dispersive attractions, the rearrangement energy needed
to convert an isolated anion into its form optimally adapted to the crystal. The presence of
the rearrangement energy showed that the two-body interactions in previous theories [13–16],
which did not explicitly introduce the rearrangement energy, were actually effective potentials
which included, in addition to the true two-body interactions, a structure-dependent fraction of
the rearrangement energy. Two different lines of reasoning suggest that the explanation [6, 12]
of why CsCl adopts the 8:8 structure at ambient temperatures might also apply to RbCl at low
temperatures. In this event, the 8:8 structure would have a lower energy than the 6:6 phase
with the latter being the stable phase at room temperature solely on account of its greater
entropy. First, this possibility is suggested by the well known radius ratio rules [17–19],
which although possibly somewhat uncertain in their theoretical foundation, can successfully
rationalize a wide range of experimental data. These rules predict that an alkali halide will
adopt the 8:8 structure only if the ratio of the cation to the anion radius is greater than 0.732.
Interestingly, for RbCl this ratio is found to be 0.82 using the most standard (Pauling) radii [18]
of 1.48 Å for Rb+ and 1.81 Å for Cl−; even larger ratios are predicted using radii [20–22]
derived from electron density maps. Second, two studies of multi-layered deposits of RbCl,
the substrate being first TlCl [23] and later amorphous bases [24], indicated that the 8:8 phase
was indeed more stable than the 6:6 structure at low temperatures. The failure to generate the
8:8 phase either by cooling the 6:6 material from room temperature or by depositing it directly
onto a glass capillary at low temperatures can be explained by postulating [23] that the crystal
becomes kinetically trapped in the higher energy 6:6 phase in accordance with Ostwald’s step
rule [25, 26]. It is one object of this paper to investigate the relative energies of these two
phases using the methods known to be successful for CsCl [6, 12].

The second broad class of reason motivating the study of inter-ionic forces is provided by
recent investigations [27–31] of the structures of small nanocrystals encapsulated in carbon
nanotubes. Newly developed methods in transmission electron microscopy [32, 33] at atomic
resolution have enabled the structures of such encapsulated crystals to be determined. The
structures differ from those of the corresponding bulk materials by at least changes in the cell
dimensions and lowerings of symmetry [28, 31], and these may be accompanied by further
distortions [27]. For some materials entirely novel structures not exhibited by the bulk are
observed [34]. Our present programme of computing the inter-ionic potentials for a range
of essentially ionic solids is the first step in constructing theoretical models capable of being
used to both understand and predict the structures of such encapsulated crystals. Simple
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models [35, 36] have yielded insights into the mechanisms through which the ionic crystals
fill the tubes when these are immersed in the corresponding ionic liquid melt, the experimental
method of preparing the encapsulated solids [27–31].

2. Components of the cohesive energy

2.1. Theoretical overview

The fundamental assumption made in the present calculations is that the crystals are fully ionic.
This means [1, 5, 37] that the electronic wavefunction for the entire solid can be written as an
anti-symmetrized product of individual ion wavefunctions each of which, although in general
different from that of the corresponding free ion, is spherically symmetric and contains the
integral number of electrons consistent with its formal charge. The wavefunctions of different
ions are not orthogonal; their overlaps generate the short range repulsions which oppose the
attractive Madelung terms thereby maintaining crystals at their equilibrium geometries.

For a crystal of stoichiometry CA with closest cation–anion separation R, an expression
for the binding energy (UL(R)) measured relative to the sum of those of the free ions is
derived [1, 5, 38] by evaluating the energy expectation value predicted from such a crystal
electronic wavefunction followed by adding the additional contributions arising from electron
correlation. The result, after neglecting the explicitly three-body and higher order multi-body
terms expected to be small [37], is

UL(R) = N f {−M/R + Ere(R) + nCAVsCA(R) + (1/2)[nAAVsAA(xAA R)

+ nCCVsCC(xCC R)]} + Udisp(R). (2.1)

Here N f is a constant ensuring that UL(R) is a binding energy per mol, M is the Madelung
constant, Ere(R) is the rearrangement energy needed to convert one free anion into its
form optimal for the crystal with cation–anion separation R, nXY is the number of closest
neighbouring ions of type Y (Y = cation C or anion A) coordinating one ion of type X and
VsXY(xXY R) is the short range interaction between one ion X and one closest neighbour of type
Y located at a distance xXYR. Each of Ere(R) and the VsXY(xXY R) is the sum of an uncorrelated
part, designated by the additional superscript 0, plus a contribution originating from electron
correlation that is evaluated using simple density functional theory as described elsewhere [12].
Since this method only captures the short range overlap dependent contributions to the
correlated part of each VsXY(xXY R), the inter-ionic dispersive attractions appear separately
in (2.1) with Udisp(R) being the total dispersion energy of the crystal. No cation rearrangement
energy appears in (2.1) because there is abundant evidence, reviewed elsewhere [1, 2, 5],
that cations having a p6 outermost electronic configuration are essentially unaffected by
their in-crystal environments. However it is well established [1, 2, 5, 7, 10] that anions are
contracted by such environments thus introducing non-zero Ere(R) into (2.1). The uncorrelated
part (V 0

sXY(xXY R)) of each VsXY(xXY R) is computed using the relativistic integrals program
(RIP) [39, 40] to yield a result which not only takes full account of relativity but is also
exact once given the two individual ion wavefunctions. The methodology used in the present
computations differs in only one small detail from that used in the study [12] of CsCl and is
fully documented elsewhere [1, 5, 7, 10].

2.2. Short range potentials

The wavefunction for the free cation, needed as input to the RIP program, was computed using
the Oxford Dirac–Fock program [41]. For each of the three cubic crystal structures examined,
namely the four-coordinated zinc blende (4:4) structure, the 6:6 rock salt structured polymorph
and the 8:8 phase having the CsCl structure, the contracted anion wavefunction optimal at each
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Table 1. Optimized parameters A and k in the OHSMFS environmental potential (au).

R 5.5 5.75 6.0 6.125 6.25 6.375 6.5 6.75 7.0 7.5

4:4 A 0.606 0.503 0.435 0.396 0.384 0.363 0.331 0.293 0.258
k 2.483 2.309 2.154 2.085 2.068 2.041 2.000 1.900 1.809

6:6 A 1.92 1.51 1.16 1.04 0.896 0.834 0.780 0.633 0.521
k 2.809 2.635 2.431 2.336 2.219 2.185 2.146 2.015 1.876

8:8 A 8.97 5.94 4.05 3.37 2.85 2.41 2.10 1.59 1.34 0.718
k 3.869 3.500 3.191 3.082 2.990 2.850 2.776 2.567 2.513 2.011

closest cation–anion separation (R) was computed by introducing an environmental potential
into the Dirac–Fock program. This potential describes the interaction of an anion electron
(distance ra from the anion nucleus) with the crystalline environment. In the OHSMFS
(optimized hyperbolic secant Madelung Fermi-smoothed [7]) method used here, this potential
takes the form [7]

F (0)
env(ra; R) = Asech[k(ra − R)] + FMFS(ra; R). (2.2)

Here FMFS(ra; R) is the Fermi-smoothed function representing the Madelung potential [7]
and the two constants A and k, which define the short range part, are optimized through an
iterative two-step process. In the first step, the anion wavefunction is computed in an OHSMFS
environmental potential thus yielding at the Dirac–Fock (uncorrelated level) the rearrangement
energy E0

re(R) needed to generate this state of the ion from the free anion. The resulting
wavefunction is then input to the RIP program to compute, at the uncorrelated level, the short
range two-body energies V 0

sXY(xXY R) from which the uncorrelated part (U 0
L(R)) equation (2.1)

of [12])) of UL(R) is calculated. This two-step process is iterated using the variational criterion
that the total crystal energy be minimized, which reduces to minimizing the cohesive energy.
The resulting values of A and k are reported in table 1. A program RELCRION (Relativistic
Crystal Ion Program) incorporating both the RIP and Dirac–Fock programs has been developed
to perform these optimizations automatically in a single computation in contrast to the many
separate computations required previously. Full details will be reported elsewhere [42]. The
OHSMFS method differs from the OEMFS method used to study [12] CsCl only in that the
environmental potential is given by (2.2) above rather than by (3.5) of [7]. The OHSMFS and
the previously more extensively used OEMFS (optimized on eigenvalues Madelung Fermi-
smoothed [6, 7]) and ODMFS (optimized on density Madelung Fermi-smoothed [7]) methods
have been shown [7] to yield results of essentially the same quality.

Table 2 presents the uncorrelated parts of the rearrangement energies E0
re(R), short range

interactions V 0
sCA(R) between each cation and its closest anion neighbour as well as the short

range interactions V 0
sAA(xAA R) between each anion and its closest anion neighbour at a distance

xAA R. Both E0
re(R) and V 0

sCA(R) increase with both decreasing R in each of the three structures
and with increasing coordination number at constant R. This behaviour arises because the anion
is becoming increasingly compressed on traversing through either of these sequences as shown
by the radial expectation values presented in table 3 for a single outermost electron.

Each total rearrangement energy (Ere(R)), and short range interaction VsCA(R) and
VsAA(xAA R) was derived by adding to the corresponding uncorrelated quantity a short range
correlation contribution derived from electron-gas theory. The correlation contribution to each
Ere(R) was calculated using equation (15) of [10] with the scaling factor Bcorr having the 0.544
value previously derived [12] for the chloride ion. The short range correlation contributions
to the two-body interactions were computed through the method used in all previous studies
with the RIP program. Both the uncorrelated and total short range cation–cation interactions
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Table 2. Rearrangement energies (Ere(R)) and anion dependent short range interactions (au).
(Note: (1) Each energy without superscript 0 includes the contribution from electron correlation
of short range; addition of superscript 0 denotes this contribution is not included. (2) Anion–
anion interactions V 0

sAA(xAA R) and VsAA(xAA R) are ‘optimal’; see text. For the 4:4, 6:6 and 8:8
structures xAA = √

(8/3),
√

2 and [2/
√

3] respectively.)

E0
re(R) Ere(R)

R 4:4 6:6 8:8 4:4 6:6 8:8

5.5 0.013 743 0.031 922 0.051 146 0.010 655 0.027 479 0.045 987
5.75 0.009 270 0.021 224 0.034 696 0.006 735 0.017 676 0.030 462
6.0 0.006 516 0.014 050 0.023 346 0.004 418 0.011 222 0.019 930
6.125 0.005 333 0.011 595 0.018 882 0.003 475 0.009 028 0.015 861
6.25 0.004 530 0.009 404 0.015 275 0.002 858 0.007 103 0.012 609
6.375 0.003 772 0.007 782 0.012 541 0.002 304 0.005 703 0.010 129
6.5 0.003 048 0.006 491 0.010 220 0.001 700 0.004 601 0.008 061
6.75 0.002 159 0.004 352 0.006 894 0.001 073 0.002 869 0.005 161
7.0 0.001 514 0.002 976 0.004 665 0.000 629 0.001 777 0.003 323
7.5 0.002 078 0.001 221

V 0
sCA(R) VsCA(R)

R 4:4 6:6 8:8 4:4 6:6 8:8

5.5 0.022 772 0.019 318 0.016 801 0.020 690 0.017 453 0.015 057
5.75 0.015 735 0.013 438 0.011 657 0.014 053 0.011 914 0.010 238
6.0 0.010 863 0.009 399 0.008 155 0.009 510 0.008 156 0.006 996
6.125 0.009 078 0.007 857 0.006 874 0.007 860 0.006 739 0.005 823
6.25 0.007 549 0.006 595 0.005 794 0.006 458 0.005 587 0.004 841
6.375 0.006 307 0.005 521 0.004 868 0.005 325 0.004 615 0.004 011
6.5 0.005 298 0.004 619 0.004 106 0.004 419 0.003 806 0.003 332
6.75 0.003 708 0.003 272 0.002 915 0.003 001 0.002 613 0.002 288
7.0 0.002 610 0.002 318 0.002 080 0.002 043 0.001 786 0.001 569
7.5 0.001 076 0.000 744

V 0
sAA(xAA R) VsAA(xAA R)

R 4:4 6:6 8:8 4:4 6:6 8:8

5.5 0.000 104 0.000 441 0.003 789 0.000 027 0.000 260 0.002 856
5.75 0.000 061 0.000 296 0.002 547 −0.000 001 0.000 137 0.001 735
6.0 0.000 036 0.000 196 0.001 704 −0.000 011 0.000 058 0.000 990
6.125 0.000 027 0.000 158 0.001 389 −0.000 014 0.000 032 0.000 716
6.25 0.000 021 0.000 127 0.001 125 −0.000 014 0.000 010 0.000 492
6.375 0.000 016 0.000 101 0.000 912 −0.000 015 −0.000 005 0.000 326
6.5 0.000 012 0.000 080 0.000 732 −0.000 014 −0.000 015 0.000 185
6.75 0.000 007 0.000 050 0.000 468 −0.000 013 −0.000 028 −0.000 001
7.0 0.000 004 0.000 031 0.000 287 −0.000 011 −0.000 033 −0.000 118
7.5 0.000 103 −0.000 188

reported in table 4, being computed from the free cation wavefunction, are independent of
structure.

2.3. The anion–anion interaction

The anion–anion potentials reported in table 2 are called ‘optimal [43, 44] because, for all
three structures, each interaction at each R was computed using the wavefunction optimal for
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Table 3. Chloride ion properties (au). (Note: Mean radius and mean square radius in au are
averages with weights of 1/3 and 2/3 over those for the relativistic orbitals 3p1/2 and 3p3/2 having
j = 1/2 and 3/2 respectively.)

〈r〉 〈r2〉 〈r4〉

R 4:4 6:6 8:8 4:4 6:6 8:8 4:4 6:6 8:8

6.0 1.971 1.953 1.939 4.688 4.560 4.469 42.095 37.930 35.361
6.25 1.982 1.966 1.957 4.757 4.644 4.579 44.083 40.287 38.122
6.375 1.987 1.971 1.963 4.792 4.680 4.619 45.117 41.337 39.224

Table 4. The short range Rb+–Rb+ interaction (au).

xCC R V 0
sCC(xCC R) VsCC(xCC R) xCC R V 0

sCC(xCC R) VsCC(xCC R)

[2/
√

3] 5.5 0.002 054 0.001 642 7.0[2/
√

3] 0.000 041 0.000 004
[2/

√
3] 5.75 0.001 092 0.000 807 5.75

√
2 0.000 036 0.000 003

[2/
√

3] 6.0 0.000 574 0.000 380 6.0
√

2 0.000 016 −0.000 003
[2/

√
3] 6.125 0.000 416 0.000 256 6.125

√
2 0.000 010 −0.000 005

[2/
√

3] 6.25 0.000 299 0.000 168 6.25
√

2 0.000 007 −0.000 004
[2/

√
3] 6.375 0.000 217 0.000 110 6.375

√
2 0.000 004 −0.000 004

[2/
√

3] 6.5 0.000 155 0.000 067 6.5
√

2 0.000 003 −0.000 003
5.5

√
2 0.000 083 0.000 024 5.75

√
(8/3) 0.000 001 −0.000 003

[2/
√

3] 6.75 0.000 080 0.000 022 7.0
√

2 0.000 000 −0.000 002

that crystal geometry. Potentials V 0
sAA(rAA) and VsAA(rAA) computed using at all inter-ionic

separations the same anion wavefunction, namely that optimal for an R value, denoted R′
e,

close to the equilibrium value Re are called ‘frozen’ [43–45]. Here rAA is the anion–anion
separation.

Frozen potentials are required for current implementations of the compressible ion model
which have been reviewed elsewhere [2, 43]. For RbCl, the uncorrelated and total frozen anion–
anion potentials computed from the Cl− wavefunction for the 6:6 structure with R′

e = 6.25 au
are presented and discussed in the appendix.

2.4. The dispersion energy

The total two-body dispersion energy, Udisp(R), appearing in (2.1), including its damping
at inter-ionic separations for which the overlap of the ion wavefunctions ceases to be
negligible, was calculated using the methods already described [5, 7, 9, 10]. The values
of the dipole–quadrupole dispersion coefficients, C8(CC), C8(AA), CDQ

8 (CA) and CQD
8 (CA)

derived from the Starkschall–Gordon formula, were scaled as before for CsCl using the same
factors [12] of 1.403, 1.285, 1.352 and 1.394. The total Axilrod–Teller triple dipole dispersion
energy, UAT(R), of the crystal was evaluated, as previously [12], in its undamped form.
The significance of this interaction is assessed here by adding it, at each R value, to the
expression (2.1) for UL(R).

All the data needed to evaluate both the two-body dispersion energy and the Axilrod–Teller
energy for interactions involving only the cations are presented in table 5. The value of the
Rb+ polarizability, αC, was derived [46] from experimental data and subsequently confirmed
by an independent ab initio quantum chemistry electronic structure computation [47]. The
electron number, PC, needed to calculate the C6(CC) coefficient from the Slater–Kirkwood
formula was derived [5] from data on the iso-electronic inert gas.
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Table 5. Cation properties and purely cationic dispersion coefficients (au).

αC PC dC 〈r2〉C 〈r4〉C C6(CC) C8(CC) ν(CCC)

9.05 7.305 2.282 20.454 115.899 55.188 1316.209 374.857

Table 6. Anion dependent polarizabilities and parameters determining the two-body dispersive
attractions (au).

αA PA dA C6(CA) C6(AA) C8(AA) CDQ
8 (CA) CQD

8 (CA)

4:4 25.476 6.106 1.605 109.592 238.307 8249.705 1995.832 1298.477
6:6 23.409 6.106 2.073 103.476 209.907 7019.565 1820.399 1226.013
8:8 23.697 6.106 2.220 104.340 213.786 6998.067 1796.773 1236.250

Table 7. Anion dependent three-body triple dipole dispersion coefficients (au).

ν(CCA) ν(CAA) ν(AAA)

6:6 766.761 1650.128 3635.363
8:8 773.826 1682.594 3799.565

The two-body dispersion interactions involving anions are structure dependent and the
data needed for their evaluation are assembled in table 6. The anion polarizability, αA, for the
6:6 structure at its experimental equilibrium R value, denoted Re, was derived by subtracting
αC from the experimental molar polarizability [48] of 32.459 au. There is no experimental
value for the polarizability of the Cl− ion in either the 4:4 or 8:8 phase at their respective
equilibrium geometries. These polarizabilities were therefore derived from the semi-empirical
yet trustworthy relation [46]

log10 αA = A + B R−2
e + C R−4

e (2.3)

which describes the dependence on Re of the polarizabilities of anions in crystals at their
equilibrium geometries. The coefficients A, B and C are the same for the 6:6 and 8:8 phases,
those labelled P for parabolic fit in table 3 of [46] being used to derive αA for the latter phase.
For RbCl, the reliability of (2.3) is confirmed by its prediction of an αA value of 23.451 au
for the 6:6 phase taking Re to have the room temperature value of 6.219 au used to derive
the A, B and C coefficients. The value of Re input to (2.3) in the derivation of αA for the
8:8 phase was that predicted by the RIP computation, described in the next section, using the
dispersion parameters of the 6:6 structure. The values of the coefficients in (2.3) do not transfer
from the 6:6 and 8:8 phases to the 4:4 structure [49]. The anion polarizability in this structure
was therefore predicted from the linear (C = 0) form of (2.3) using the coefficients A and B
derived for this structure which are presented under the heading ‘linear B3’ in table 5 of [49].
The Re value used was that predicted by the RIP computation with the dispersion parameters
of the 6:6 structure.

For each of the 4:4, 6:6 and 8:8 phases, the two anion expectation values 〈r2〉 and 〈r4〉
(table 3) for the R value closest to Re were used to derive the dipole–quadrupole dispersion
coefficients from the Starkschall–Gordon formula. These R values were 6.0, 6.25 and
6.5 au respectively. The ν(XXY) triple–dipole dispersion coefficients involving anions and
assembled in table 7 were derived from the Midzuno–Kihara formula using the polarizabilities
and dipole–dipole dispersion coefficients presented in tables 5 and 6.
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Table 8. Crystal cohesion predicted for three cubic structures. (Note: (1) Lattice energy De
in kJ mol−1, equilibrium closest cation–anion separation Re in au. (2) Compressibility B in
1010 N m−2. (3) Experimental De at 0 K from [67–69]; Re at 0 K from [50] and B at 4.2 K
from [70]. (4) See text for comparison with experiment of the Re computed for the 8:8 phase.)

6:6 8:8
4:4
UL(R) UL(R) +UAT(R) Expt UL(R) +UAT(R)

De 648.5 687.6 684.3 689, 692, 695 694.0 687.7
Re 6.099 6.214 6.239 6.172 6.324 6.371
B 1.055 1.881 1.874 1.865 2.498 2.304

Table 9. Influence of chloride ion description on the predicted crystal binding. (Note: See notes
(1) and (2) to table 8.)

4:4 6:6 8:8

6:6 Frozen Frozen All 6:6 6:6 Frozen
Udisp(R) VsAA(rAA) UL(R) VsAA(rAA) UL(R) pots Udisp(R) VsAA(rAA) UL(R)

De 651.8 648.3 648.5 687.6 687.6 690.8 691.9 693.7 694.0
Re 6.054 6.098 6.099 6.206 6.214 6.394 6.342 6.308 6.324
B 1.024 1.025 1.055 1.854 1.881 2.330 2.443 2.594 2.498

Table 10. Predicted differences (�U8) between the 6:6 and 8:8 structure energies (kJ mol−1).
(Note: For full definition of methods, see the text; the first four results do not include UAT(R) or
UZP.)

All 6:6 6:6 Frozen UL(R) UL(R)+
Method pots Udisp(R) VsAA(rAA) UL(R) + UAT(R) UAT(R) + UZP

�U8 3.2 4.3 6.1 6.4 3.4 3.2

3. Cohesion of the three cubic phases

3.1. The relative energies of the polymorphs

The lattice energy De, positive for a bound crystal, R value Re at which the crystal binding
is maximized and the bulk compressibility B were predicted for each of the three phases by
considering the R dependence of the crystal binding energy UL(R) (2.1). This is the energy
expression derived by including not only all explicitly two-body terms but also the implicitly
multi-body effects that arise from the modification of the anion wavefunction through its
interaction with all the other ions in the crystal. These effects not only generate a finite
rearrangement energy but also produce short range interactions optimal for the in-crystal
environment. It is only the explicitly three-body and higher order multi-body terms, the
mathematical expressions for all of which involve the wavefunctions of three or more ions, that
are not included in UL(R) [1, 5]. Since the Axilrod–Teller three-body interaction makes a small
but significant contribution [12] to the difference between energies of the 6:6 and 8:8 phases of
CsCl, this interaction was also considered here. The results of those RbCl computations which
included these interactions are reported in the columns labelled ‘+UAT(R)’ in tables 8–10.

The reliability of the present computations is shown by the good agreement (table 8)
between experiment and the theoretical predictions, both without and with the small
contribution from UAT(R), for the cohesive properties De, Re and B for the 6:6 structure
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of RbCl. This is the only phase of RbCl for which there is unambiguous experimental data.
The prediction that De for the 4:4 structure is 39 kJ mol−1 smaller than that of the 6:6 phase,
coupled with the greater molar volume of the former,explains the lack of experimental evidence
for this polymorph.

The theoretical result (both with and without the inclusion of UAT(R)) that De for the 8:8
structure is larger than that for the 6:6 phase predicts quite unambiguously that the 8:8 phase
lies at a lower energy than the 6:6 structure. Although these calculations did not include
the short range interactions between second nearest neighbour anion pairs, namely those
separated at respective distances of 2R and 2R

√
(2/3) in the 6:6 and 8:8 phases, the result

that V 0
sAA[2R

√
(2/3)] was found to be only 0.000 005 au and 0.000 004 au for R = 6.25 and

6.375 au in the 8:8 structure shows that the larger De predicted for this phase is not an artefact
caused by omitting these more distant interactions. Furthermore, both of the corresponding
total short range interactions VsAA[2R

√
(2/3)] were found to be only −0.000 001 au. The

prediction that the 8:8 phase has the larger De inevitably carries the further implication that
this phase is the most stable at 0 K even though only the 6:6 structure is observed at ambient
temperatures. This provides very strong support to the experimental evidence [23, 24] that
the 8:8 phase is indeed the most stable at low temperatures. Thus it has been reported [23]
that, although condensing RbCl in a glass capillary at −190 ◦C produces the 6:6 structure,
condensation onto a previously deposited layer of TlCl produces the 8:8 phase at −190 ◦C
but the 6:6 structure at room temperature. All further layers deposited at −190 ◦C exhibited
the 8:8 structure. It was therefore argued [23] that the 8:8 phase really is the most stable at
−190 ◦C and it was not generated merely because it was initially condensed onto a template
having the same structure. The conversion of the 8:8 phase of RbCl into the 6:6 phase by
heating provided further evidence for the temperature dependence of the relative stability of
these two phases. The step rule [25, 26] can explain why the 6:6 structure, rather than the
thermodynamically stable 8:8 phase, was produced in the direct condensation onto glass at
−190 ◦C. The production [24] of the 8:8 polymorph by condensation of RbCl onto amorphous
bases at low temperatures is further evidence that this phase has the lowest energy. However,
it should be noted that the experimental measurements [23, 24] also provide evidence for
disorder within the thin films studied, and moreover that the diffraction images are diffuse,
consistent with the presence of small nuclei of both structural types. The value of 6.124 au
reported [23] as measured by x-ray diffraction for the Re value of the 8:8 phase is not only
inconsistent with the later electron diffraction result [24] of 6.497±0.20 au but also the smaller
result does not appear to be a credible reflection of the true bulk value since it is less than the
well established [50] 6.172 au Re of the 6:6 phase. However, as already noted, the electron
diffraction data for RbCl consists of diffuse rings with large associated measurement errors.
Furthermore, the low temperature data presented in [23] may be polluted by the presence of ice
on the sample. The further experimental result [50] that Re for the 8:8 phase under a pressure
of 5 kbar is 6.399 au is more evidence that the 6.172 au result cannot be representative of the
bulk material. The agreement of the predictions (table 8), both with and without including
UAT(R), for the Re of the 8:8 phase with the 6.497 ± 0.20 au experimental value [24] provides
further evidence that the results of the present calculations are trustworthy.

The results assembled in table 8 show that the difference �U8 between the lattice energies
of the 8:8 and 6:6 structures, defined to be positive if De is larger for the former phase, is
predicted to be 3.4 kJ mol−1 after introduction of the Axilrod–Teller energy. The results from
the similar study [12] for CsCl indicate that this 3.4 kJ mol−1 prediction is more reliable
than the larger value of 6.4 kJ mol−1 derived without considering UAT(R), that is from just
UL(R) (2.1). The zero point energy UZP of each of the 6:6 and 8:8 RbCl phases was calculated
using the GULP program and the shell model as described in section 4 below. Since UZP for
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the 8:8 phase was only predicted to be 0.2 kJ mol−1 greater than that of the 6:6 structure, the
resulting 3.2 kJ mol−1 for �U8 remains essentially unaltered from that derived by considering
just the sum UL(R) + UAT(R).

3.2. Analysis of the cohesive energies

3.2.1. Dependence on differences between the anion wavefunctions. The small size of the
energy difference �U8 shows the need to investigate whether the predicted crystal cohesion
is sensitive to the way in which the in-crystal anion is described. The significance of using
the potential fully optimal for the phase considered is shown by the comparison (table 9)
between the results thereby predicted with those derived using slightly different potentials.
For each of the three phases, the predictions in the columns headed ‘UL(R)’ derived using
the optimal potentials differ only very slightly from those in the columns headed ‘frozen
VsAA(rAA)’ derived using the frozen anion–anion interaction reported in seventh column of
potentials in table A.1. However, the cohesion predicted for the 4:4 and 8:8 phases shows
slightly greater discrepancies with the fully optimal results if the dispersion energy Udisp(R)

is calculated using the dispersion parameters of the 6:6 structure rather than those appropriate
for the phase considered. These De values, presented in the columns headed ‘6:6 Udisp(R)’ in
table 9, differ from their fully optimal counterparts by about 3 kJ mol−1. The results for the 8:8
phase reported in the columns headed ‘all 6:6 pots’ were derived with all the potentials taken
from the 6:6 structure except for using the frozen potential for VsAA(rAA). This approximation
loses a further 1 kJ mol−1 of lattice energy.

The results presented in table 10 show how the prediction for �U8 is influenced by the
chosen potential model. The results in the first four columns show how the calculated �U8

increases on passing from using the 6:6 phase potentials for 8:8 phase to that predicted using for
each phase the potentials optimal for that phase. Although introducing UAT(R) significantly
reduces the predicted �U8, this is still unambiguously predicted to be positive.

3.2.2. Significance of the dispersion energy. Both previous theoretical investiga-
tions [6, 12, 14, 15] of the lattice energies of the 6:6 and 8:8 phases of CsCl as well as
the values of Udisp(R) computed here for RbCl show that one cannot hope to predict correctly
even the sign of �U8 unless the dispersion energy is considered. Thus �U8 is predicted to
be −7.6 kJ mol−1 for CsCl [12] if the dispersion energy is neglected, with furthermore the
cohesion of both of the individual phases being significantly underestimated as manifested by
predictions for De that are too small coupled with overestimated Re values. The dispersive
attractions were found not only to be responsible for the underestimation of the individual
cohesions of the two phases but also, more importantly, to contribute +15.5 kJ mol−1 to �U8

to produce a final prediction for �U8 of +7.9 kJ mol−1 [12]. The agreement with the ex-
perimental value of 5.6 kJ mol−1 is most acceptable in view of the small size of this energy
difference.

The importance of the dispersion contribution to �U8 is further shown by the
−12.6 kJ mol−1 prediction [51] for CsCl yielded by a density functional (DFT) computation
of the type which, using purely local energy functionals (local density approximation LDA),
does not capture the dispersive attractions. In the comparison with experiment of the predicted
cohesion of the one (8:8) phase stable at room temperature, the absence of dispersion was
partially masked because the LDA description yields inter-ionic exchange attractions that are
too great in magnitude. This was first emphasized by Rae [52, 53],subsequently discussed from
a slightly different perspective [1, 54] and more recently reiterated from a third viewpoint [55].
Thus, although the Re of 6.710 au calculated [51] for the 8:8 phase of CsCl is not unreasonable
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when compared with the experimental result of 6.748 au [16], the partial cancellation of the
error of lack of dispersion with that of too attractive exchange cannot be expected to occur
to the same degree in two different phases. This, therefore, renders untrustworthy the �U8

predictions of such computations. This shows that a calculation for RbCl which does not
include dispersion, and which only obtains reasonable results for its 6:6 phase because the
lack of dispersion is partially compensated by too attractive an exchange, will not predict �U8

reliably. Thus for RbCl, the computations [51] predicted �U8 to be −13.1 kJ mol−1 even
though the Re and B values of 6.208 au and 1.66 × 1010 N m−2 calculated for the 6:6 phase
are reasonable when compared with their experimental counterparts presented in table 8.

The earlier density functional calculations [56] of the Gordon–Kim type [57], in which both
an additive density assumption and a Thomas–Fermi–Dirac treatment of the kinetic energy were
introduced in addition to the LDA exchange,predicted �U8 for RbCl to be −9.6 kJ mol−1. This
result is qualitatively similar to the later DFT result of −13.1 kJ mol−1 [51]. Furthermore, the
overattractive exchange in the calculation [56] partially compensated not only for the absence of
dispersion but also for the use of the wavefunction of the free chloride ion which has been shown
subsequently [5, 12, 58] to overestimate the short range cation–anion repulsion. These errors
very largely cancelled to predict De = 690 kJ mol−1, Re = 6.16 au and B = 1.85×1010 N m−2

in very reasonable agreement compared with experiment (table 8). The Waldman–Gordon
factors [59, 60] used [56] to correct errors in the kinetic and exchange functionals, although
largely successful for light ions, fail to improve more than very marginally the results for heavier
systems for which these factors remain close to unity for the reasons described elsewhere [1].
The error cancellations in the calculations [56] explain why a later computation [61] using
an improved description of the in-crystal anion, thus reducing the short range cation–anion
repulsion whilst still retaining the overattractive exchange and no dispersion, predicted too
small an Re value of 6.038 au. The prediction of 6.530 au [61] for Re in the 8:8 phase of CsCl
similarly underestimates the experimental result of 6.748 au [16]. Clearly the −11.4 kJ mol−1

prediction [61] for �U8 of RbCl cannot be trusted.
The present calculations predict the total crystal dispersion energy (Udisp(R)) of RbCl in

the 6:6 and 8:8 phases to be −90.5 and −92.9 kJ mol−1 respectively at R = 6.25 au. These
results, typical of those for RbCl close to the equilibrium geometries, provide conclusive
evidence that the dispersive attractions play a significant role in its cohesion and hence they
must be considered in any trustworthy calculations of its properties.

4. Shell model description

It is well established [2] that ion-induced dipole interactions can be important in the energetics
of ionic materials when ions do not reside on centres of symmetry. Since a significant fraction
of the ions in an encapsulated nanocrystal are located in such sites, the potentials computed
for cubic materials must be augmented with a description of such a polarization response.
This is conveniently described by using the shell model which has not only been thoroughly
documented in the literature but can also be readily implemented because it is incorporated
into the GULP program [62].

The GULP program can handle two-body interactions in both numerical and a range of
analytic forms as well as the undamped Axilrod–Teller interaction. Since, however, it does not
handle compressible ion models and rearrangement energies, it was necessary to introduce,
for each of the cubic phases, the short range cation–anion effective pair potential (V eff

sCA(R))

defined by

V eff
sCA(R) = VsCA(R) + (1/nCA)Ere(R). (4.1)
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Table 11. Fitted short range interactions and predicted 6:6 phase crystal cohesion (au). (Note:
Constants A1, b1, A2 and b2 defined by equation (4.1).)

Analytic potentials Predicted cohesiona

A1 b1 A2 b2 χ2 Fitted RIP

V eff
CA (R) 13.7581 0.578 212 115.031 0.639 93 1.8361 × 10−10 De 684.3 684.3

VsAA (rAA) 3.893 57 1.080 63 −1.873 84 1.185 25 4.781 × 10−11 Re 6.238 6.239
VsCC (rCC) 170 958.0 0.351 755 −0.061 54 0.961 563 3.942 × 10−11 B 1.793 1.874

a Includes UAT(R) but excludes UZP. See notes (1) and (2) to table 8.

This definition ensures [6, 12] that the expression (2.3) of [12] for UL(R) is reproduced if (4.1)
is taken to be the short range cation–anion interaction in standard expressions for the crystal
energy which do not contain a rearrangement term. Both VsCC(rCC) and, for the 6:6 phase,
V eff

sCA(R) and VsAA(rAA) were fitted to the analytic form

V ′
sXY(rXY) = A1 exp(−b1/rXY) + A2 exp(−b2/rXY) (4.2)

where V ′
sXY(rXY) is V eff

sCA(R) for the X = C, Y = A case but is just the short range two-
body interaction when either X = Y = C or X = Y = A. Table 11 presents, for each of the
three potentials, the four defining parameters in (4.2) along with the χ2 value describing the
quality of the fit. The presence of the weak attractive tails, arising from the short range
correlation contributions, in both VsCC(rCC) and VsAA(rAA) clearly means that these potentials
could not be fitted with just a single exponential. It was also found that V eff

sCA(R) could not
be described sufficiently accurately by a single exponential. It is beyond the scope of this
paper to elucidate the reasons for the failure of a single exponential description. However, two
possibilities are first, that the two components VsCA(R) and Ere(R) of V eff

sCA(R) might have
different distance dependencies, and second that VsCA(R) itself is the sum of penetration and
permutation components as discussed for the anion–anion interaction in the appendix.

The dispersive attractions between each type of ion pair were input in numerical form
to the GULP program because this does not currently incorporate the dispersion damping
functions used in the present work. Since, however, these damping functions are analytic, the
dispersive attractions could be computed at as many inter-ionic separations as were needed to
ensure that only negligible errors arose from their description in the GULP program by spline
functions. The results presented in the right-hand side of table 11 show that the values of De, Re

and B computed using the fitted potentials (4.2) and the GULP program agree well with their
counterparts (table 8) calculated directly by using the Simons, Parr, and Finlan analysis [63]
of the R dependence of the predicted crystal cohesion. However, the results derived using a
V eff

sCA(R) fitted to just a single exponential failed to reproduce to an acceptable level of accuracy
the ab initio results in table 8.

The shell model requires defining, for each ion X, the shell charge YX and spring constant
kX. These yield the polarizability of the isolated ion as (YX)2/kX. A first plausible approach
to defining these parameters in a non-empirical way is, for each ion, to take |YX| to equal
the electron number (tables 5 and 6) used to derive the dipole–dipole dispersion coefficients
and then to calculate kX by demanding that the polarizability of that ion is reproduced. This
approach was adopted for the cation, taking the polarizability to be that of the free ion. Since
anions, unlike alkali cations, are significantly affected by their environment in-crystal, the value
of the anion polarizability to be used is not obvious a priori. This uncertainty is compounded
because the shell model does include a description of some of the in-crystal modifications
generated by the short range forces. However, it was found that, if the anion spring constant
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Table 12. The elastic constants, zero point energy and entropy of the 6:6 phase. (Note: Elastic
constants in 1010 N m−2 and entropy (S) at 298 K in J K−1 mol−1.)

Method UL(R) UL(R) + UAT(R) UL(R) UL(R) + UAT(R) Expta

YA (au) −3.4 −3.1 C11 4.340 4.145 4.297
kA (au) 0.477 0.394 C12 0.557 0.617 0.649
UZP (kJ mol−1) 3.45 3.39 C44 0.557 0.617 0.493

S 92.9 93.7 95.9

a Experimental elastic constants at 4.2 K from [70] and experimental entropy from [64].

kA was derived from either the polarizability of the free ion or that of the ion in a point
charge lattice, then the experimental molar total crystal polarizability αcr (=32.459 au [48])
was not reproduced. The resulting values of αcr were too large, so that the high frequency
dielectric constant ε∞, determined by αcr through the Clausius–Mossotti relation, was also
overestimated. It was therefore decided to determine kA by demanding that the experimental
αcr be reproduced. Since the Clausius–Mossotti equation relating αcr and ε∞ also contains the
molar volume, adjusting kA to reproduce αcr will only also reproduce ε∞ if the computation
perfectly predicts the experimental Re. Since the GULP program directly yields ε∞ rather than
αcr , it was required that the program predicted the ε∞ which yields the correct αcr using the
predicted rather than the slightly different experimental Re in the Clausius–Mossotti equation.
However, it was found that, whether kA was determined by fitting to either αcr or ε∞, the static
dielectric constant ε0 was predicted to be 5.597 compared with the experimental value [64] of
4.91. Since it is ε0 which determines the response of the crystal to an externally applied static
electric field and, furthermore, ions in encapsulated crystals will experience such fields, we
believe that it is essential that a shell model description of such ions is only suitable for studying
encapsulated crystals if it reproduces ε0. However, it was found that changing YA from −PA

whilst still determining kA by requiring that ε∞ was reproduced, predicted a different value for
ε0. The parameters YA and kA, presented in table 12, were therefore determined by requiring
that the experimental values of both αcr and ε0 were simultaneously reproduced. Slightly
changed YA and kA values result when these are similarly determined with the Axilrod–Teller
interactions introduced in the calculation of the crystal energy. Although YA is considerably
smaller in magnitude than either PA or the common |YC| and PC of the cation, such YC and
YA values are qualitatively similar to those determined by empirical fitting for both alkali
halides [65] and CaF2 [66].

The entropy at 300 K, the zero point energy and elastic constants at 0 K computed for the
6:6 phase are compared in table 12 with the available experimental data. These predictions
agree well with experiment. The two elastic constants C12 and C44 are predicted to be equal
because the use in the GULP program of effective potentials of the type (4.1) reduces the
expression for the total energy of the crystal to a sum of pair potentials. The cancellation of
errors in the early electron gas computations [56] are retained in their predictions for C11 and
C12 (=C44) of 4.18 × 1010 and 0.69 × 1010 N m−2. The treatment of the lattice dynamics [61]
is, in principle, more sophisticated because this includes one of the mechanics that can destroy
the equality between C12 and C44. However, the resulting predictions of 3.923 × 1010 N m−2,
0.633×1010 N m−2 and 0.650×1010 N m−2 for C11, C12 and C44 respectively, readily deduced
from the combinations presented in [61], are less satisfactory than those presented in table 12.
Even the sign of the difference C11 − C44 is predicted incorrectly.

For the 8:8 phase, the short range interactions involving the anions were also described by
using the spline functions incorporated in the GULP program. Since there is no experimental
value of ε0 for this phase, YA was taken to be the same as that for the 6:6 polymorph. However,
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Table 13. The elastic constants, zero point energy and entropy of the 8:8 phase. (Note: See note
to table 12.)

Method UL(R) UL(R) + UAT(R) UL(R) UL(R) + UAT(R)

YA (au) −3.4 −3.1 C11 6.206 5.836
kA (au) 0.470 0.389 C12 1.451 1.335
UZP (kJ mol−1) 3.75 3.58 S 87.9 90.2

addition of αC to the αA result (table 7) derived in section 2.3 for the 8:8 phase yields the
reliable value of 32.747 au for αcr. The kA value, presented in table 13, was therefore derived
by requiring that this αcr value was reproduced. This approach predicted ε0 to be 7.487 without
UAT(R) and 7.668 including UAT(R). Very similar values of 7.431 and 7.618 result if both
YA and kA are taken to remain unchanged from the 6:6 phase. The entropy at 300 K, zero
point energy and elastic constants (table 13) predicted using the optimal YA and kA values are
essentially identical to those derived using the shell parameters of the 6:6 phase. The prediction
that the entropy of the 8:8 phase is smaller than that (table 12) of the 6:6 polymorph explains
why the latter is the more stable at higher temperatures even though the former has a lower
energy.

5. Conclusion

This paper has presented a non-empirical fully ionic description of three cubic polymorphs of
solid rubidium chloride, these being a four-coordinated phase having the zinc blende structure,
the six-coordinated material having the rock salt structure and the eight-fold coordinated
phase having the cesium chloride structure. Compressed yet still spherically symmetric
wavefunctions optimal for the anion in each in-crystal environment were computed by using
a version of the Oxford Dirac–Fock program slightly modified by including the OHSMFS
description for the part of the potential that originates from all the other ions and which acts
on each anion electron. These in-crystal anion wavefunctions and the free cation Dirac–Fock
wavefunction were used to compute, with the Relativistic Integrals Program in its automated
RELCRION form, uncorrelated two-body inter-ionic interaction potentials which are exact
once the input wavefunctions have been specified.

The inter-ionic potentials and rearrangement energies needed to convert a free anion into
their optimal in-crystal forms computed at both the uncorrelated level and with the inclusion
of the short range correlation corrections have been reported in detail. These are needed
both for parameterizing compressible ion models and for constructing effective cation–anion
interactions. At least one of these two sets of potentials could then be used to describe the
structures of small RbCl clusters either in isolation or as a small nanocrystal encapsulated in
a nanotube. The ‘optimal’ anion–anion short range potentials, computed by using at each
inter-nuclear separation the Cl− wavefunction optimal for that geometry, have been compared
with the corresponding ‘frozen’ potential in which the same anion wavefunction, one optimal
for a near equilibrium cation–anion separation (R′

e), is used to compute the potential over the
entire range of inter-anionic distances. This comparison shows at all distances, except at the
largest R for the optimal 8:8 potential, the behaviour designated ‘normal’ [43, 44] in which
the optimal potential is less repulsive that its frozen counterpart for R less than R′

e, becoming
more repulsive at larger R. The opposite behaviour, designated mixed, arises in the comparison
involving the optimal 8:8 potential at the largest R values.

The lattice energy predicted for the 4:4 structure is almost 40 kJ mol−1 smaller than
that calculated for either the 6:6 or the 8:8 polymorph. This provides an explanation, in
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addition to traditional radius ratio arguments, for the lack of experimental evidence for the
four-coordinated phase. The present computations clearly predict that the 8:8 phase lies lower
in energy by some 3 kJ mol−1 than the 6:6 structure not withstanding that it is the latter phase
which is the most stable at room temperature. The prediction that the 8:8 phase is energetically
favoured is not only consistent with radius ratio arguments but, more significantly, is supported
by two separate experiments [23, 24] that strongly suggest that this phase is indeed favoured
over the 6:6 structure at low temperatures. Good evidence that the present calculations are
trustworthy is provided both by the good agreement between the predicted and well established
experimental results for the cohesive properties of the 6:6 polymorph and by the success of
computations [6, 12] of the present type in explaining and predicting the greater stability of the
8:8 phase of CsCl compared with the 6:6 polymorph. The importance of the contributions of
the inter-ionic dispersive attractions to differences between the energies of the different phases
has been re-emphasised.

A shell model, suitable through its incorporation of ion-induced dipole interactions, for
describing both small clusters and crystals encapsulated in nanotubes has also been presented.
The cation shell parameters were defined by combining a simple theoretical argument with
the known value of the electronic polarizability of the free cation. The anion parameters
were derived by using the requirement that both the total electronic polarizability and the
static dielectric constant of the bulk crystal are reproduced. Both the elastic constants and the
entropy predicted for the 6:6 phase at 300 K agree well with experiment. The smaller entropy
predicted for the 8:8 structure explains the greater stability and experimental observation of
the 6:6 phase at ambient temperatures even though its energy is not quite as low as that of the
8:8 polymorph.
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Appendix. Comparative analysis of the optimal and frozen anion–anion potentials

In table A.1, the fifth potential is the uncorrelated ‘frozen’ short range anion–anion interaction
computed by using at all rAA the same anion wavefunction, that optimal for the 6:6 structure
having an R (denoted R′

e) of 6.25 au, close to the experimental Re of 6.172 au. The rightmost
column contains the corresponding total short range interaction. Each frozen V 0

sAA(rAA) and
VsAA(rAA), whether reported as 4:4, 6:6 or 8:8, is part of the same interaction because all these
potentials were computed using the same Cl− wavefunction. These interactions are presented
under separate headings for ready comparison with their ‘optimal’ counterparts.

For any R less than R′
e, the optimal wavefunction for the 6:6 structure is more contracted

than that for R = R′
e so that the overlap between two optimal anion wavefunctions is less than

that between the two frozen wavefunctions at the same rAA. The origin of these repulsions
in wavefunction overlap suggests that the optimal V 0

sAA(xAA R) should, at these xAA R, be
less repulsive than its frozen counterpart. Similarly, the optimal V 0

sAA(xAA R) would be
expected to be more repulsive than the frozen one for R greater than R′

e where the optimal
wavefunctions being more expanded would overlap more than that used to compute the frozen
potential. This behaviour, designated ‘normal’ [43], is shown in the comparison (table A.1)
between the frozen and optimal potentials for the 6:6 phase. Nevertheless, the opposite
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Figure A.1. The permutation V 0
AAperm(rAA) (positive) and penetration V 0

AApen(rAA) (negative)
components of the uncorrelated short range anion–anion interaction plotted as a function of anion–
anion distance rAA. The solid curves are the frozen potential components with the optimal
components denoted by cross (8:8), open triangle (6:6) and open circle (4:4) points. The data
for the two smallest rAA for the 8:8 phase are omitted for clarity.

behaviour, with the optimal potential being more repulsive than the frozen one at R < R′
e but

becoming less repulsive at larger R, is not uncommon. This behaviour, designated ‘mixed’,
is understood [43] by expressing V 0

sAA(rAA) as the sum of its penetration (V 0
AApen(rAA)) and

permutation (V 0
AAperm(rAA)) components according to

V 0
sAA(rAA) = V 0

AApen(rAA) + V 0
AAperm(rAA). (A.1)

After subtraction of the point coulomb contribution q2
A/rAA, where qA is the net charge on ion

A, V 0
AApen(rAA) is the interaction energy that would arise, if there was no exchange of electrons

between the ions, thus being the residual purely electrostatic interaction energy. V 0
AAperm(rAA)

is the sum of all contributions to V 0
sAA(rAA) which arise from interchange of electrons between

the ions. The solid lines in figures A.1 and A.2, generated as a smooth curve through the data
in table A.1, show how V 0

AApen(rAA) and V 0
AAperm(rAA) vary with rAA for the frozen potential

in comparison with the corresponding quantities for the three optimal potentials shown as
discreet data points. Contraction of both anions in a pair at constant rAA reduces the overlap
of their wavefunctions thus lowering both the repulsive permutation term and the magnitude
of the attractive penetration contribution.
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Figure A.2. An expanded presentation of the data of figure A.1 for the larger distances and smaller
energies occurring in the 6:6 and 4:4 phases. Data for the 8:8 phase are omitted.

For the 6:6 phase, figures A.1 and A.2 show that both V 0
AAperm(rAA) and the magnitude

(|V 0
AApen(rAA)|) of the attractive penetration energy for the optimal potential are smaller than

those predicted from the frozen potential for R < R′
e (6.25 au), corresponding to an rAA of

8.839 au. This arises because each of the optimal anion wavefunctions is more contracted
than that for the R′

e used to generate the frozen potential. This situation is reversed for R
values greater than R′

e where the optimal wavefunctions are more expanded than that used to
compute the frozen potential. The comparison of the total V 0

sAA(rAA) potentials shows normal
behaviour because, for R < R′

e, the lowering of V 0
AAperm(rAA) on passing from the frozen to

the optimal potential more than outweighs the reduction of |V 0
AApen(rAA)| with the converse

situation occurring for the larger R values. This is shown graphically in the figures because
the optimal (open triangle) values for V 0

AAperm(rAA) are further from the corresponding frozen

potential (solid curve) than are the optimal values of V0
AApen(rAA) from their frozen counterparts.

The anion wavefunctions in the 8:8 structure for R � 6.25 au are more contracted than
that for the 6:6 phase at R′

e as shown (table 2) by their larger rearrangement energies E0
re(R).

For R = 6.375 and 6.5 au in the 8:8 phase, E0
re(R) is also larger than that for 6:6 phase at

R′
e, showing that the two former wavefunctions are more contracted. These computed results

show that the increase in the number of neighbours from 6 to 8 on passing from the 6:6 phase
at R′

e to the 8:8 phase at R = 6.375 au and 6.5 au more than outweighs the increase in R. The
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Table A.1. Components of the frozen and optimal OEMFS short range anion–anion potentials
(au).

4:4 (xAA = √
(8/3))

V 0
pen(

√
8R/

√
3) V 0

perm(
√

8R/
√

3) V 0
S (

√
8R/

√
3)

VS(
√

8R/
√

3)

R Frozen Optimal Frozen Optimal Frozen Optimal Frozen

5.5 −0.000 020 −0.000 022 0.000 122 0.000 126 0.000 103 0.000 104 0.000 006
5.75 −0.000 008 −0.000 015 0.000 062 0.000 076 0.000 054 0.000 061 −0.000 001
6.0 −0.000 003 −0.000 010 0.000 030 0.000 045 0.000 027 0.000 036 −0.000 003
6.125 −0.000 002 −0.000 008 0.000 021 0.000 035 0.000 019 0.000 027 −0.000 003
6.25 −0.000 001 −0.000 006 0.000 014 0.000 027 0.000 013 0.000 021 −0.000 003
6.375 −0.000 001 −0.000 005 0.000 010 0.000 020 0.000 009 0.000 016 −0.000 002
6.5 −0.000 001 −0.000 004 0.000 007 0.000 016 0.000 006 0.000 012 −0.000 002
6.75 0.0 −0.000 003 0.000 003 0.000 009 0.000 003 0.000 007 −0.000 001
7.0 0.0 −0.000 002 0.000 001 0.000 005 0.000 001 0.000 004 −0.000 001

6:6 (xAA = √
2)

V 0
pen(

√
2R) V 0

perm(
√

2R) V 0
S (

√
2R)

VS(
√

2R)

R Frozen Optimal Frozen Optimal Frozen Optimal Frozen

5.5 −0.000 249 −0.000 051 0.000 831 0.000 492 0.000 582 0.000 441 0.000 176
5.75 −0.000 119 −0.000 042 0.000 476 0.000 337 0.000 357 0.000 296 0.000 082
6.0 −0.000 056 −0.000 033 0.000 271 0.000 229 0.000 215 0.000 196 0.000 034
6.125 −0.000 039 −0.000 029 0.000 205 0.000 187 0.000 166 0.000 158 0.000 020
6.25 −0.000 026 −0.000 026 0.000 154 0.000 153 0.000 128 0.000 127 0.000 011
6.375 −0.000 018 −0.000 023 0.000 115 0.000 124 0.000 097 0.000 101 0.000 004
6.5 −0.000 012 −0.000 019 0.000 086 0.000 099 0.000 074 0.000 080 0.000 001
6.75 −0.000 006 −0.000 014 0.000 048 0.000 064 0.000 042 0.000 050 −0.000 002
7.0 −0.000 003 −0.000 011 0.000 025 0.000 042 0.000 022 0.000 031 −0.000 003

8:8 (xAA = [2/
√

3])

V 0
pen(2R/

√
3) V 0

perm(2R/
√

3) V 0
S (2R/

√
3)

VS(2R/
√

3)

R Frozen Optimal Frozen Optimal Frozen Optimal Frozen

5.5 −0.004 430 −0.001 147 0.008 496 0.004 936 0.004 066 0.003 789 0.002 380
5.75 −0.002 514 −0.000 857 0.005 211 0.003 403 0.002 697 0.002 547 0.001 411
6.0 −0.001 415 −0.000 658 0.003 233 0.002 362 0.001 818 0.001 704 0.000 845
6.125 −0.001 058 −0.000 584 0.002 558 0.001 973 0.001 499 0.001 389 0.000 655
6.25 −0.000 790 −0.000 517 0.002 026 0.001 642 0.001 236 0.001 126 0.000 505
6.375 −0.000 589 −0.000 446 0.001 606 0.001 358 0.001 018 0.000 912 0.000 387
6.5 −0.000 438 −0.000 395 0.001 280 0.001 127 0.000 842 0.000 732 0.000 299
6.75 −0.000 241 −0.000 296 0.000 811 0.000 764 0.000 570 0.000 468 0.000 171
7.0 −0.000 132 −0.000 227 0.000 514 0.000 514 0.000 383 0.000 287 0.000 092
7.5 −0.000 039 −0.000 136 0.000 206 0.000 239 0.000 167 0.000 103 0.000 020

greater contraction of all these 8:8 anion wavefunctions explains why the optimal V 0
AAperm(rAA)

and |V 0
AApen(rAA)| are smaller than their frozen counterparts (figure A.1). The comparison

between the optimal and frozen V 0
sAA (rAA) shows normal behaviour because (figure A.1) the

optimal (cross) V 0
AAperm(rAA) values lie further from the frozen potential results than do optimal

V 0
AApen(rAA) from their frozen counterparts. For R = 7.5 au, the optimal anion wavefunction
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in the 8:8 structure is more expanded than the 6:6 function for R = R′
e as shown by the smaller

E0
re(R) of the former (table 2). This explains why the optimal V 0

AAperm(rAA) and |V 0
AApen(rAA)|

are larger than their frozen counterparts. However, the comparison of the optimal and frozen
V 0

sAA(rAA) shows mixed behaviour with the optimal potential being smaller because the increase
in the repulsive V 0

AAperm(xAA R) on passing from the frozen to the optimal wavefunction is less

than the increase of |V 0
AApen(xAA R)| as shown in figure A.1. The E0

re(R) in table 2 show that
for R > 5.5 au the anion wavefunctions in the 4:4 structure are expanded relative to that for the
6:6 phase at R = R′

e. This has the consequence (figure A.2) that these optimal V 0
AAperm(rAA)

and |V 0
AApen(rAA)| are greater than their frozen counterparts. The comparison, when passing

from the frozen to the optimal total potentials, shows normal behaviour because the increase
in V 0

AAperm(rAA) is greater than that of |V 0
AApen(rAA)|.

In the 6:6 and 8:8 phases, for each of the three pairs of R values (5.5, 6.75), (5.75, 7.0) and
(6.125, 7.5) listing the 6:6 distance first, the rAA are essentially the same (figure A.1) on account
of different factors xAA. Comparison of the two E0

re(R) in each of the three pairs shows the
wavefunction in the 6:6 phase to be more compressed. This explains why V 0

AAperm(xAA R) and

|V 0
AApen(xAA R)| are smaller (figure A.1) for the 6:6 phase in each pair. Although comparison of

the two potentials in the first pair shows normal behaviour with V 0
sAA(rAA) for the 8:8 structure

being greater than that in the 6:6 phase, comparison of the potentials in both the latter pairs
shows mixed behaviour, the repulsion being greater in the 6:6 phase, as was previously reported
for MgO [43].
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